| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 2 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 3 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 4 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 5 |
3 4
|
mp1i |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ℂfld ∈ CMnd ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 9 |
|
fss |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐼 ⟶ ℂ ) |
| 10 |
7 8 9
|
sylancl |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 : 𝐼 ⟶ ℂ ) |
| 11 |
|
ssidd |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 12 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 𝐹 finSupp 0 ) |
| 13 |
1 2 5 6 10 11 12
|
gsumres |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( ℂfld Σg 𝐹 ) ) |
| 14 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 15 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 16 |
8
|
a1i |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ℝ ⊆ ℂ ) |
| 17 |
|
0red |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ℝ ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
| 19 |
18
|
addlidd |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 20 |
18
|
addridd |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 21 |
19 20
|
jca |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 22 |
1 14 15 5 6 16 7 17 21
|
gsumress |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg 𝐹 ) = ( ℝfld Σg 𝐹 ) ) |
| 23 |
13 22
|
eqtr2d |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld Σg 𝐹 ) = ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) ) |
| 24 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
| 25 |
24 7
|
fssdm |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ⊆ 𝐼 ) |
| 26 |
7 25
|
feqresmpt |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( ℂfld Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 |
12
|
fsuppimpd |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 29 |
|
simpl1 |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝐹 : 𝐼 ⟶ ℝ ) |
| 30 |
25
|
sselda |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥 ∈ 𝐼 ) |
| 31 |
29 30
|
ffvelcdmd |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 32 |
8 31
|
sselid |
⊢ ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 33 |
28 32
|
gsumfsum |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℂfld Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹 ‘ 𝑥 ) ) |
| 34 |
23 27 33
|
3eqtrd |
⊢ ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld Σg 𝐹 ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹 ‘ 𝑥 ) ) |