Metamath Proof Explorer


Theorem regsumsupp

Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019) (Proof shortened by AV, 19-Jul-2019)

Ref Expression
Assertion regsumsupp ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( ℝfld Σg 𝐹 ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹𝑥 ) )

Proof

Step Hyp Ref Expression
1 cnfldbas ℂ = ( Base ‘ ℂfld )
2 cnfld0 0 = ( 0g ‘ ℂfld )
3 cnring fld ∈ Ring
4 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
5 3 4 mp1i ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ℂfld ∈ CMnd )
6 simp3 ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → 𝐼𝑉 )
7 simp1 ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → 𝐹 : 𝐼 ⟶ ℝ )
8 ax-resscn ℝ ⊆ ℂ
9 fss ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐼 ⟶ ℂ )
10 7 8 9 sylancl ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → 𝐹 : 𝐼 ⟶ ℂ )
11 ssidd ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) )
12 simp2 ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → 𝐹 finSupp 0 )
13 1 2 5 6 10 11 12 gsumres ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( ℂfld Σg 𝐹 ) )
14 cnfldadd + = ( +g ‘ ℂfld )
15 df-refld fld = ( ℂflds ℝ )
16 8 a1i ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ℝ ⊆ ℂ )
17 0red ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → 0 ∈ ℝ )
18 simpr ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
19 18 addid2d ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝑥 ) = 𝑥 )
20 18 addid1d ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( 𝑥 + 0 ) = 𝑥 )
21 19 20 jca ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ℂ ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) )
22 1 14 15 5 6 16 7 17 21 gsumress ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( ℂfld Σg 𝐹 ) = ( ℝfld Σg 𝐹 ) )
23 13 22 eqtr2d ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( ℝfld Σg 𝐹 ) = ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) )
24 suppssdm ( 𝐹 supp 0 ) ⊆ dom 𝐹
25 24 7 fssdm ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( 𝐹 supp 0 ) ⊆ 𝐼 )
26 7 25 feqresmpt ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( 𝐹 ↾ ( 𝐹 supp 0 ) ) = ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹𝑥 ) ) )
27 26 oveq2d ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( ℂfld Σg ( 𝐹 ↾ ( 𝐹 supp 0 ) ) ) = ( ℂfld Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹𝑥 ) ) ) )
28 12 fsuppimpd ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( 𝐹 supp 0 ) ∈ Fin )
29 simpl1 ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝐹 : 𝐼 ⟶ ℝ )
30 25 sselda ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → 𝑥𝐼 )
31 29 30 ffvelrnd ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
32 8 31 sseldi ( ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) ∧ 𝑥 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹𝑥 ) ∈ ℂ )
33 28 32 gsumfsum ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( ℂfld Σg ( 𝑥 ∈ ( 𝐹 supp 0 ) ↦ ( 𝐹𝑥 ) ) ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹𝑥 ) )
34 23 27 33 3eqtrd ( ( 𝐹 : 𝐼 ⟶ ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉 ) → ( ℝfld Σg 𝐹 ) = Σ 𝑥 ∈ ( 𝐹 supp 0 ) ( 𝐹𝑥 ) )