| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rzgrp.r | ⊢ 𝑅  =  ( ℝfld  /s  ( ℝfld  ~QG  ℤ ) ) | 
						
							| 2 |  | zsubrg | ⊢ ℤ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 3 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 4 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 5 | 4 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 6 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 7 | 6 | subsubrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  →  ( ℤ  ∈  ( SubRing ‘ ℝfld )  ↔  ( ℤ  ∈  ( SubRing ‘ ℂfld )  ∧  ℤ  ⊆  ℝ ) ) ) | 
						
							| 8 | 5 7 | ax-mp | ⊢ ( ℤ  ∈  ( SubRing ‘ ℝfld )  ↔  ( ℤ  ∈  ( SubRing ‘ ℂfld )  ∧  ℤ  ⊆  ℝ ) ) | 
						
							| 9 | 2 3 8 | mpbir2an | ⊢ ℤ  ∈  ( SubRing ‘ ℝfld ) | 
						
							| 10 |  | subrgsubg | ⊢ ( ℤ  ∈  ( SubRing ‘ ℝfld )  →  ℤ  ∈  ( SubGrp ‘ ℝfld ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ℤ  ∈  ( SubGrp ‘ ℝfld ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℂ ) | 
						
							| 16 | 13 15 | addcomd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑥  +  𝑦 )  ∈  ℤ  ↔  ( 𝑦  +  𝑥 )  ∈  ℤ ) ) | 
						
							| 18 | 17 | rgen2 | ⊢ ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ ( ( 𝑥  +  𝑦 )  ∈  ℤ  ↔  ( 𝑦  +  𝑥 )  ∈  ℤ ) | 
						
							| 19 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 20 |  | replusg | ⊢  +   =  ( +g ‘ ℝfld ) | 
						
							| 21 | 19 20 | isnsg | ⊢ ( ℤ  ∈  ( NrmSGrp ‘ ℝfld )  ↔  ( ℤ  ∈  ( SubGrp ‘ ℝfld )  ∧  ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ ( ( 𝑥  +  𝑦 )  ∈  ℤ  ↔  ( 𝑦  +  𝑥 )  ∈  ℤ ) ) ) | 
						
							| 22 | 11 18 21 | mpbir2an | ⊢ ℤ  ∈  ( NrmSGrp ‘ ℝfld ) | 
						
							| 23 | 1 | qusgrp | ⊢ ( ℤ  ∈  ( NrmSGrp ‘ ℝfld )  →  𝑅  ∈  Grp ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ 𝑅  ∈  Grp |