| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rzgrp.r |  |-  R = ( RRfld /s ( RRfld ~QG ZZ ) ) | 
						
							| 2 |  | zsubrg |  |-  ZZ e. ( SubRing ` CCfld ) | 
						
							| 3 |  | zssre |  |-  ZZ C_ RR | 
						
							| 4 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 5 | 4 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 6 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 7 | 6 | subsubrg |  |-  ( RR e. ( SubRing ` CCfld ) -> ( ZZ e. ( SubRing ` RRfld ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ RR ) ) ) | 
						
							| 8 | 5 7 | ax-mp |  |-  ( ZZ e. ( SubRing ` RRfld ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ RR ) ) | 
						
							| 9 | 2 3 8 | mpbir2an |  |-  ZZ e. ( SubRing ` RRfld ) | 
						
							| 10 |  | subrgsubg |  |-  ( ZZ e. ( SubRing ` RRfld ) -> ZZ e. ( SubGrp ` RRfld ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ZZ e. ( SubGrp ` RRfld ) | 
						
							| 12 |  | simpl |  |-  ( ( x e. RR /\ y e. RR ) -> x e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( x e. RR /\ y e. RR ) -> x e. CC ) | 
						
							| 14 |  | simpr |  |-  ( ( x e. RR /\ y e. RR ) -> y e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( x e. RR /\ y e. RR ) -> y e. CC ) | 
						
							| 16 | 13 15 | addcomd |  |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) = ( y + x ) ) | 
						
							| 17 | 16 | eleq1d |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) ) | 
						
							| 18 | 17 | rgen2 |  |-  A. x e. RR A. y e. RR ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) | 
						
							| 19 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 20 |  | replusg |  |-  + = ( +g ` RRfld ) | 
						
							| 21 | 19 20 | isnsg |  |-  ( ZZ e. ( NrmSGrp ` RRfld ) <-> ( ZZ e. ( SubGrp ` RRfld ) /\ A. x e. RR A. y e. RR ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) ) ) | 
						
							| 22 | 11 18 21 | mpbir2an |  |-  ZZ e. ( NrmSGrp ` RRfld ) | 
						
							| 23 | 1 | qusgrp |  |-  ( ZZ e. ( NrmSGrp ` RRfld ) -> R e. Grp ) | 
						
							| 24 | 22 23 | ax-mp |  |-  R e. Grp |