| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubrg.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 5 |
4
|
subrgss |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 7 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 9 |
6 8
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ 𝐴 ) |
| 10 |
1
|
oveq1i |
⊢ ( 𝑆 ↾s 𝐵 ) = ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) |
| 11 |
|
ressabs |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 12 |
10 11
|
eqtrid |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 13 |
9 12
|
syldan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 14 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
| 15 |
14
|
subrgring |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 17 |
13 16
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 19 |
18
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 21 |
9 20
|
sstrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
| 22 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 23 |
1 22
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 25 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 26 |
25
|
subrg1cl |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 28 |
24 27
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 29 |
21 28
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) |
| 30 |
18 22
|
issubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) ) |
| 31 |
3 17 29 30
|
syl21anbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 32 |
31 9
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) |
| 33 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝑆 ∈ Ring ) |
| 35 |
12
|
adantrl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 36 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
| 37 |
36
|
subrgring |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
| 38 |
37
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
| 39 |
35 38
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 40 |
|
simprr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ 𝐴 ) |
| 41 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 42 |
40 41
|
sseqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 43 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 44 |
22
|
subrg1cl |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 45 |
44
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 46 |
43 45
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 47 |
42 46
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) |
| 48 |
4 25
|
issubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( ( 𝑆 ∈ Ring ∧ ( 𝑆 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) ) |
| 49 |
34 39 47 48
|
syl21anbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 50 |
32 49
|
impbida |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |