Metamath Proof Explorer


Theorem subsubrg

Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypothesis subsubrg.s S=R𝑠A
Assertion subsubrg ASubRingRBSubRingSBSubRingRBA

Proof

Step Hyp Ref Expression
1 subsubrg.s S=R𝑠A
2 subrgrcl ASubRingRRRing
3 2 adantr ASubRingRBSubRingSRRing
4 eqid BaseS=BaseS
5 4 subrgss BSubRingSBBaseS
6 5 adantl ASubRingRBSubRingSBBaseS
7 1 subrgbas ASubRingRA=BaseS
8 7 adantr ASubRingRBSubRingSA=BaseS
9 6 8 sseqtrrd ASubRingRBSubRingSBA
10 1 oveq1i S𝑠B=R𝑠A𝑠B
11 ressabs ASubRingRBAR𝑠A𝑠B=R𝑠B
12 10 11 eqtrid ASubRingRBAS𝑠B=R𝑠B
13 9 12 syldan ASubRingRBSubRingSS𝑠B=R𝑠B
14 eqid S𝑠B=S𝑠B
15 14 subrgring BSubRingSS𝑠BRing
16 15 adantl ASubRingRBSubRingSS𝑠BRing
17 13 16 eqeltrrd ASubRingRBSubRingSR𝑠BRing
18 eqid BaseR=BaseR
19 18 subrgss ASubRingRABaseR
20 19 adantr ASubRingRBSubRingSABaseR
21 9 20 sstrd ASubRingRBSubRingSBBaseR
22 eqid 1R=1R
23 1 22 subrg1 ASubRingR1R=1S
24 23 adantr ASubRingRBSubRingS1R=1S
25 eqid 1S=1S
26 25 subrg1cl BSubRingS1SB
27 26 adantl ASubRingRBSubRingS1SB
28 24 27 eqeltrd ASubRingRBSubRingS1RB
29 21 28 jca ASubRingRBSubRingSBBaseR1RB
30 18 22 issubrg BSubRingRRRingR𝑠BRingBBaseR1RB
31 3 17 29 30 syl21anbrc ASubRingRBSubRingSBSubRingR
32 31 9 jca ASubRingRBSubRingSBSubRingRBA
33 1 subrgring ASubRingRSRing
34 33 adantr ASubRingRBSubRingRBASRing
35 12 adantrl ASubRingRBSubRingRBAS𝑠B=R𝑠B
36 eqid R𝑠B=R𝑠B
37 36 subrgring BSubRingRR𝑠BRing
38 37 ad2antrl ASubRingRBSubRingRBAR𝑠BRing
39 35 38 eqeltrd ASubRingRBSubRingRBAS𝑠BRing
40 simprr ASubRingRBSubRingRBABA
41 7 adantr ASubRingRBSubRingRBAA=BaseS
42 40 41 sseqtrd ASubRingRBSubRingRBABBaseS
43 23 adantr ASubRingRBSubRingRBA1R=1S
44 22 subrg1cl BSubRingR1RB
45 44 ad2antrl ASubRingRBSubRingRBA1RB
46 43 45 eqeltrrd ASubRingRBSubRingRBA1SB
47 42 46 jca ASubRingRBSubRingRBABBaseS1SB
48 4 25 issubrg BSubRingSSRingS𝑠BRingBBaseS1SB
49 34 39 47 48 syl21anbrc ASubRingRBSubRingRBABSubRingS
50 32 49 impbida ASubRingRBSubRingSBSubRingRBA