Metamath Proof Explorer


Theorem subsubrg2

Description: The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypothesis subsubrg.s S=R𝑠A
Assertion subsubrg2 ASubRingRSubRingS=SubRingR𝒫A

Proof

Step Hyp Ref Expression
1 subsubrg.s S=R𝑠A
2 1 subsubrg ASubRingRaSubRingSaSubRingRaA
3 elin aSubRingR𝒫AaSubRingRa𝒫A
4 velpw a𝒫AaA
5 4 anbi2i aSubRingRa𝒫AaSubRingRaA
6 3 5 bitr2i aSubRingRaAaSubRingR𝒫A
7 2 6 bitrdi ASubRingRaSubRingSaSubRingR𝒫A
8 7 eqrdv ASubRingRSubRingS=SubRingR𝒫A