| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumress.b |
|
| 2 |
|
gsumress.o |
|
| 3 |
|
gsumress.h |
|
| 4 |
|
gsumress.g |
|
| 5 |
|
gsumress.a |
|
| 6 |
|
gsumress.s |
|
| 7 |
|
gsumress.f |
|
| 8 |
|
gsumress.z |
|
| 9 |
|
gsumress.c |
|
| 10 |
|
oveq1 |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
11
|
ovanraleqv |
|
| 13 |
6 8
|
sseldd |
|
| 14 |
9
|
ralrimiva |
|
| 15 |
12 13 14
|
elrabd |
|
| 16 |
15
|
snssd |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
1 17 2 18
|
mgmidsssn0 |
|
| 20 |
4 19
|
syl |
|
| 21 |
20 15
|
sseldd |
|
| 22 |
|
elsni |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
sneqd |
|
| 25 |
20 24
|
sseqtrrd |
|
| 26 |
16 25
|
eqssd |
|
| 27 |
11
|
ovanraleqv |
|
| 28 |
6
|
sselda |
|
| 29 |
28 9
|
syldan |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
27 8 30
|
elrabd |
|
| 32 |
3 1
|
ressbas2 |
|
| 33 |
6 32
|
syl |
|
| 34 |
|
fvex |
|
| 35 |
33 34
|
eqeltrdi |
|
| 36 |
3 2
|
ressplusg |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
oveqd |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
37
|
oveqd |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
39 41
|
anbi12d |
|
| 43 |
33 42
|
raleqbidv |
|
| 44 |
33 43
|
rabeqbidv |
|
| 45 |
31 44
|
eleqtrd |
|
| 46 |
45
|
snssd |
|
| 47 |
3
|
ovexi |
|
| 48 |
47
|
a1i |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
49 50 51 52
|
mgmidsssn0 |
|
| 54 |
48 53
|
syl |
|
| 55 |
54 45
|
sseldd |
|
| 56 |
|
elsni |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
sneqd |
|
| 59 |
54 58
|
sseqtrrd |
|
| 60 |
46 59
|
eqssd |
|
| 61 |
26 60
|
eqtr3d |
|
| 62 |
61
|
sseq2d |
|
| 63 |
23 57
|
eqtr3d |
|
| 64 |
37
|
seqeq2d |
|
| 65 |
64
|
fveq1d |
|
| 66 |
65
|
eqeq2d |
|
| 67 |
66
|
anbi2d |
|
| 68 |
67
|
rexbidv |
|
| 69 |
68
|
exbidv |
|
| 70 |
69
|
iotabidv |
|
| 71 |
37
|
seqeq2d |
|
| 72 |
71
|
fveq1d |
|
| 73 |
72
|
eqeq2d |
|
| 74 |
73
|
anbi2d |
|
| 75 |
74
|
exbidv |
|
| 76 |
75
|
iotabidv |
|
| 77 |
70 76
|
ifeq12d |
|
| 78 |
62 63 77
|
ifbieq12d |
|
| 79 |
26
|
difeq2d |
|
| 80 |
79
|
imaeq2d |
|
| 81 |
7 6
|
fssd |
|
| 82 |
1 17 2 18 80 4 5 81
|
gsumval |
|
| 83 |
60
|
difeq2d |
|
| 84 |
83
|
imaeq2d |
|
| 85 |
33
|
feq3d |
|
| 86 |
7 85
|
mpbid |
|
| 87 |
49 50 51 52 84 48 5 86
|
gsumval |
|
| 88 |
78 82 87
|
3eqtr4d |
|