Metamath Proof Explorer


Theorem frlmipval

Description: The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019)

Ref Expression
Hypotheses frlmphl.y Y = R freeLMod I
frlmphl.b B = Base R
frlmphl.t · ˙ = R
frlmphl.v V = Base Y
frlmphl.j , ˙ = 𝑖 Y
Assertion frlmipval I W R X F V G V F , ˙ G = R F · ˙ f G

Proof

Step Hyp Ref Expression
1 frlmphl.y Y = R freeLMod I
2 frlmphl.b B = Base R
3 frlmphl.t · ˙ = R
4 frlmphl.v V = Base Y
5 frlmphl.j , ˙ = 𝑖 Y
6 1 2 4 frlmbasmap I W F V F B I
7 6 ad2ant2r I W R X F V G V F B I
8 elmapi F B I F : I B
9 ffn F : I B F Fn I
10 7 8 9 3syl I W R X F V G V F Fn I
11 1 2 4 frlmbasmap I W G V G B I
12 11 ad2ant2rl I W R X F V G V G B I
13 elmapi G B I G : I B
14 ffn G : I B G Fn I
15 12 13 14 3syl I W R X F V G V G Fn I
16 simpll I W R X F V G V I W
17 inidm I I = I
18 eqidd I W R X F V G V x I F x = F x
19 eqidd I W R X F V G V x I G x = G x
20 10 15 16 16 17 18 19 offval I W R X F V G V F · ˙ f G = x I F x · ˙ G x
21 20 oveq2d I W R X F V G V R F · ˙ f G = R x I F x · ˙ G x
22 ovexd I W R X F V G V R x I F x · ˙ G x V
23 fveq1 f = F f x = F x
24 23 oveq1d f = F f x · ˙ g x = F x · ˙ g x
25 24 mpteq2dv f = F x I f x · ˙ g x = x I F x · ˙ g x
26 25 oveq2d f = F R x I f x · ˙ g x = R x I F x · ˙ g x
27 fveq1 g = G g x = G x
28 27 oveq2d g = G F x · ˙ g x = F x · ˙ G x
29 28 mpteq2dv g = G x I F x · ˙ g x = x I F x · ˙ G x
30 29 oveq2d g = G R x I F x · ˙ g x = R x I F x · ˙ G x
31 eqid f B I , g B I R x I f x · ˙ g x = f B I , g B I R x I f x · ˙ g x
32 26 30 31 ovmpog F B I G B I R x I F x · ˙ G x V F f B I , g B I R x I f x · ˙ g x G = R x I F x · ˙ G x
33 7 12 22 32 syl3anc I W R X F V G V F f B I , g B I R x I f x · ˙ g x G = R x I F x · ˙ G x
34 1 2 3 frlmip I W R X f B I , g B I R x I f x · ˙ g x = 𝑖 Y
35 34 adantr I W R X F V G V f B I , g B I R x I f x · ˙ g x = 𝑖 Y
36 35 5 eqtr4di I W R X F V G V f B I , g B I R x I f x · ˙ g x = , ˙
37 36 oveqd I W R X F V G V F f B I , g B I R x I f x · ˙ g x G = F , ˙ G
38 21 33 37 3eqtr2rd I W R X F V G V F , ˙ G = R F · ˙ f G