Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fconstfv
Metamath Proof Explorer
Description: A constant function expressed in terms of its functionality, domain, and
value. See also fconst2 . (Contributed by NM , 27-Aug-2004) (Proof
shortened by OpenAI , 25-Mar-2020)
Ref
Expression
Assertion
fconstfv
|- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) )
Proof
Step
Hyp
Ref
Expression
1
ffnfv
|- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) e. { B } ) )
2
fvex
|- ( F ` x ) e. _V
3
2
elsn
|- ( ( F ` x ) e. { B } <-> ( F ` x ) = B )
4
3
ralbii
|- ( A. x e. A ( F ` x ) e. { B } <-> A. x e. A ( F ` x ) = B )
5
4
anbi2i
|- ( ( F Fn A /\ A. x e. A ( F ` x ) e. { B } ) <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) )
6
1 5
bitri
|- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) )