Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fconstfv
Metamath Proof Explorer
Description: A constant function expressed in terms of its functionality, domain, and
value. See also fconst2 . (Contributed by NM , 27-Aug-2004) (Proof
shortened by OpenAI , 25-Mar-2020)
Ref
Expression
Assertion
fconstfv
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
ffnfv
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) )
2
fvex
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V
3
2
elsn
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 )
4
3
ralbii
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 )
5
4
anbi2i
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) )
6
1 5
bitri
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) )