| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmsubval.y |  |-  Y = ( R freeLMod I ) | 
						
							| 2 |  | frlmsubval.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | frlmsubval.r |  |-  ( ph -> R e. Ring ) | 
						
							| 4 |  | frlmsubval.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | frlmsubval.f |  |-  ( ph -> F e. B ) | 
						
							| 6 |  | frlmsubval.g |  |-  ( ph -> G e. B ) | 
						
							| 7 |  | frlmsubval.a |  |-  .- = ( -g ` R ) | 
						
							| 8 |  | frlmsubval.p |  |-  M = ( -g ` Y ) | 
						
							| 9 | 1 2 | frlmpws |  |-  ( ( R e. Ring /\ I e. W ) -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) | 
						
							| 10 | 3 4 9 | syl2anc |  |-  ( ph -> Y = ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ph -> ( -g ` Y ) = ( -g ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) | 
						
							| 12 | 8 11 | eqtrid |  |-  ( ph -> M = ( -g ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) ) | 
						
							| 13 | 12 | oveqd |  |-  ( ph -> ( F M G ) = ( F ( -g ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) G ) ) | 
						
							| 14 |  | rlmlmod |  |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | 
						
							| 15 | 3 14 | syl |  |-  ( ph -> ( ringLMod ` R ) e. LMod ) | 
						
							| 16 |  | eqid |  |-  ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) | 
						
							| 17 | 16 | pwslmod |  |-  ( ( ( ringLMod ` R ) e. LMod /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) e. LMod ) | 
						
							| 18 | 15 4 17 | syl2anc |  |-  ( ph -> ( ( ringLMod ` R ) ^s I ) e. LMod ) | 
						
							| 19 |  | eqid |  |-  ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) | 
						
							| 20 | 1 2 19 | frlmlss |  |-  ( ( R e. Ring /\ I e. W ) -> B e. ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 21 | 3 4 20 | syl2anc |  |-  ( ph -> B e. ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 22 | 19 | lsssubg |  |-  ( ( ( ( ringLMod ` R ) ^s I ) e. LMod /\ B e. ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) -> B e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 23 | 18 21 22 | syl2anc |  |-  ( ph -> B e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 24 |  | eqid |  |-  ( -g ` ( ( ringLMod ` R ) ^s I ) ) = ( -g ` ( ( ringLMod ` R ) ^s I ) ) | 
						
							| 25 |  | eqid |  |-  ( ( ( ringLMod ` R ) ^s I ) |`s B ) = ( ( ( ringLMod ` R ) ^s I ) |`s B ) | 
						
							| 26 |  | eqid |  |-  ( -g ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) = ( -g ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) | 
						
							| 27 | 24 25 26 | subgsub |  |-  ( ( B e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) /\ F e. B /\ G e. B ) -> ( F ( -g ` ( ( ringLMod ` R ) ^s I ) ) G ) = ( F ( -g ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) G ) ) | 
						
							| 28 | 23 5 6 27 | syl3anc |  |-  ( ph -> ( F ( -g ` ( ( ringLMod ` R ) ^s I ) ) G ) = ( F ( -g ` ( ( ( ringLMod ` R ) ^s I ) |`s B ) ) G ) ) | 
						
							| 29 |  | lmodgrp |  |-  ( ( ringLMod ` R ) e. LMod -> ( ringLMod ` R ) e. Grp ) | 
						
							| 30 | 3 14 29 | 3syl |  |-  ( ph -> ( ringLMod ` R ) e. Grp ) | 
						
							| 31 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 32 | 1 31 2 | frlmbasmap |  |-  ( ( I e. W /\ F e. B ) -> F e. ( ( Base ` R ) ^m I ) ) | 
						
							| 33 | 4 5 32 | syl2anc |  |-  ( ph -> F e. ( ( Base ` R ) ^m I ) ) | 
						
							| 34 |  | rlmbas |  |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | 
						
							| 35 | 16 34 | pwsbas |  |-  ( ( ( ringLMod ` R ) e. Grp /\ I e. W ) -> ( ( Base ` R ) ^m I ) = ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 36 | 30 4 35 | syl2anc |  |-  ( ph -> ( ( Base ` R ) ^m I ) = ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 37 | 33 36 | eleqtrd |  |-  ( ph -> F e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 38 | 1 31 2 | frlmbasmap |  |-  ( ( I e. W /\ G e. B ) -> G e. ( ( Base ` R ) ^m I ) ) | 
						
							| 39 | 4 6 38 | syl2anc |  |-  ( ph -> G e. ( ( Base ` R ) ^m I ) ) | 
						
							| 40 | 39 36 | eleqtrd |  |-  ( ph -> G e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) | 
						
							| 41 |  | eqid |  |-  ( Base ` ( ( ringLMod ` R ) ^s I ) ) = ( Base ` ( ( ringLMod ` R ) ^s I ) ) | 
						
							| 42 |  | rlmsub |  |-  ( -g ` R ) = ( -g ` ( ringLMod ` R ) ) | 
						
							| 43 | 7 42 | eqtri |  |-  .- = ( -g ` ( ringLMod ` R ) ) | 
						
							| 44 | 16 41 43 24 | pwssub |  |-  ( ( ( ( ringLMod ` R ) e. Grp /\ I e. W ) /\ ( F e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) /\ G e. ( Base ` ( ( ringLMod ` R ) ^s I ) ) ) ) -> ( F ( -g ` ( ( ringLMod ` R ) ^s I ) ) G ) = ( F oF .- G ) ) | 
						
							| 45 | 30 4 37 40 44 | syl22anc |  |-  ( ph -> ( F ( -g ` ( ( ringLMod ` R ) ^s I ) ) G ) = ( F oF .- G ) ) | 
						
							| 46 | 13 28 45 | 3eqtr2d |  |-  ( ph -> ( F M G ) = ( F oF .- G ) ) |