| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmsubval.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmsubval.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
frlmsubval.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
frlmsubval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 5 |
|
frlmsubval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 6 |
|
frlmsubval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 7 |
|
frlmsubval.a |
⊢ − = ( -g ‘ 𝑅 ) |
| 8 |
|
frlmsubval.p |
⊢ 𝑀 = ( -g ‘ 𝑌 ) |
| 9 |
1 2
|
frlmpws |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 10 |
3 4 9
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( -g ‘ 𝑌 ) = ( -g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 12 |
8 11
|
eqtrid |
⊢ ( 𝜑 → 𝑀 = ( -g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) ) |
| 13 |
12
|
oveqd |
⊢ ( 𝜑 → ( 𝐹 𝑀 𝐺 ) = ( 𝐹 ( -g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) 𝐺 ) ) |
| 14 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 15 |
3 14
|
syl |
⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 16 |
|
eqid |
⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) |
| 17 |
16
|
pwslmod |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ) |
| 18 |
15 4 17
|
syl2anc |
⊢ ( 𝜑 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ) |
| 19 |
|
eqid |
⊢ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 20 |
1 2 19
|
frlmlss |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 21 |
3 4 20
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 22 |
19
|
lsssubg |
⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) → 𝐵 ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 23 |
18 21 22
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 24 |
|
eqid |
⊢ ( -g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( -g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 25 |
|
eqid |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) = ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) |
| 26 |
|
eqid |
⊢ ( -g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) = ( -g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) |
| 27 |
24 25 26
|
subgsub |
⊢ ( ( 𝐵 ∈ ( SubGrp ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ( -g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) = ( 𝐹 ( -g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) 𝐺 ) ) |
| 28 |
23 5 6 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ( -g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) = ( 𝐹 ( -g ‘ ( ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ↾s 𝐵 ) ) 𝐺 ) ) |
| 29 |
|
lmodgrp |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( ringLMod ‘ 𝑅 ) ∈ Grp ) |
| 30 |
3 14 29
|
3syl |
⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ Grp ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 32 |
1 31 2
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐹 ∈ 𝐵 ) → 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 33 |
4 5 32
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 34 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 35 |
16 34
|
pwsbas |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 36 |
30 4 35
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 37 |
33 36
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 38 |
1 31 2
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 39 |
4 6 38
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 40 |
39 36
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 41 |
|
eqid |
⊢ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) |
| 42 |
|
rlmsub |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 43 |
7 42
|
eqtri |
⊢ − = ( -g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 44 |
16 41 43 24
|
pwssub |
⊢ ( ( ( ( ringLMod ‘ 𝑅 ) ∈ Grp ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝐹 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ∧ 𝐺 ∈ ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) ) → ( 𝐹 ( -g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) = ( 𝐹 ∘f − 𝐺 ) ) |
| 45 |
30 4 37 40 44
|
syl22anc |
⊢ ( 𝜑 → ( 𝐹 ( -g ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) 𝐺 ) = ( 𝐹 ∘f − 𝐺 ) ) |
| 46 |
13 28 45
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐹 𝑀 𝐺 ) = ( 𝐹 ∘f − 𝐺 ) ) |