| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgsubcl.p |
⊢ − = ( -g ‘ 𝐺 ) |
| 2 |
|
subgsub.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 3 |
|
subgsub.n |
⊢ 𝑁 = ( -g ‘ 𝐻 ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 5 |
2 4
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 7 |
|
eqidd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 = 𝑋 ) |
| 8 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 9 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
| 10 |
2 8 9
|
subginv |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) |
| 11 |
10
|
3adant2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) |
| 12 |
6 7 11
|
oveq123d |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 14 |
13
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 17 |
15 16
|
sseldd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 18 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ 𝑆 ) |
| 19 |
15 18
|
sseldd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐺 ) ) |
| 20 |
13 4 8 1
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 21 |
17 19 20
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 22 |
2
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 24 |
16 23
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 25 |
18 23
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐻 ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 27 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 28 |
26 27 9 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐻 ) ∧ 𝑌 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
| 29 |
24 25 28
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
| 30 |
12 21 29
|
3eqtr4d |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 𝑁 𝑌 ) ) |