Metamath Proof Explorer


Theorem pwsbas

Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsbas.y 𝑌 = ( 𝑅s 𝐼 )
pwsbas.f 𝐵 = ( Base ‘ 𝑅 )
Assertion pwsbas ( ( 𝑅𝑉𝐼𝑊 ) → ( 𝐵m 𝐼 ) = ( Base ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 pwsbas.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsbas.f 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
4 1 3 pwsval ( ( 𝑅𝑉𝐼𝑊 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
5 4 fveq2d ( ( 𝑅𝑉𝐼𝑊 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) )
6 eqid ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) )
7 fvexd ( ( 𝑅𝑉𝐼𝑊 ) → ( Scalar ‘ 𝑅 ) ∈ V )
8 simpr ( ( 𝑅𝑉𝐼𝑊 ) → 𝐼𝑊 )
9 snex { 𝑅 } ∈ V
10 xpexg ( ( 𝐼𝑊 ∧ { 𝑅 } ∈ V ) → ( 𝐼 × { 𝑅 } ) ∈ V )
11 8 9 10 sylancl ( ( 𝑅𝑉𝐼𝑊 ) → ( 𝐼 × { 𝑅 } ) ∈ V )
12 eqid ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
13 snnzg ( 𝑅𝑉 → { 𝑅 } ≠ ∅ )
14 13 adantr ( ( 𝑅𝑉𝐼𝑊 ) → { 𝑅 } ≠ ∅ )
15 dmxp ( { 𝑅 } ≠ ∅ → dom ( 𝐼 × { 𝑅 } ) = 𝐼 )
16 14 15 syl ( ( 𝑅𝑉𝐼𝑊 ) → dom ( 𝐼 × { 𝑅 } ) = 𝐼 )
17 6 7 11 12 16 prdsbas ( ( 𝑅𝑉𝐼𝑊 ) → ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = X 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) )
18 fvconst2g ( ( 𝑅𝑉𝑥𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 )
19 18 fveq2d ( ( 𝑅𝑉𝑥𝐼 ) → ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) )
20 19 ralrimiva ( 𝑅𝑉 → ∀ 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) )
21 20 adantr ( ( 𝑅𝑉𝐼𝑊 ) → ∀ 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) )
22 ixpeq2 ( ∀ 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) → X 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = X 𝑥𝐼 ( Base ‘ 𝑅 ) )
23 21 22 syl ( ( 𝑅𝑉𝐼𝑊 ) → X 𝑥𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = X 𝑥𝐼 ( Base ‘ 𝑅 ) )
24 17 23 eqtrd ( ( 𝑅𝑉𝐼𝑊 ) → ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = X 𝑥𝐼 ( Base ‘ 𝑅 ) )
25 fvex ( Base ‘ 𝑅 ) ∈ V
26 ixpconstg ( ( 𝐼𝑊 ∧ ( Base ‘ 𝑅 ) ∈ V ) → X 𝑥𝐼 ( Base ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) )
27 8 25 26 sylancl ( ( 𝑅𝑉𝐼𝑊 ) → X 𝑥𝐼 ( Base ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) )
28 2 oveq1i ( 𝐵m 𝐼 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 )
29 27 28 eqtr4di ( ( 𝑅𝑉𝐼𝑊 ) → X 𝑥𝐼 ( Base ‘ 𝑅 ) = ( 𝐵m 𝐼 ) )
30 5 24 29 3eqtrrd ( ( 𝑅𝑉𝐼𝑊 ) → ( 𝐵m 𝐼 ) = ( Base ‘ 𝑌 ) )