Description: Infinite Cartesian product of a constant B . (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpconstg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → X 𝑥 ∈ 𝐴 𝐵 = ( 𝐵 ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑓 ∈ V | |
| 2 | 1 | elixpconst | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 3 | 2 | eqabi | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } |
| 4 | mapvalg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ↑m 𝐴 ) = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ) | |
| 5 | 3 4 | eqtr4id | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → X 𝑥 ∈ 𝐴 𝐵 = ( 𝐵 ↑m 𝐴 ) ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → X 𝑥 ∈ 𝐴 𝐵 = ( 𝐵 ↑m 𝐴 ) ) |