Metamath Proof Explorer


Theorem mapvalg

Description: The value of set exponentiation. ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion mapvalg ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 } )

Proof

Step Hyp Ref Expression
1 mapex ( ( 𝐵𝐷𝐴𝐶 ) → { 𝑓𝑓 : 𝐵𝐴 } ∈ V )
2 1 ancoms ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓𝑓 : 𝐵𝐴 } ∈ V )
3 elex ( 𝐴𝐶𝐴 ∈ V )
4 elex ( 𝐵𝐷𝐵 ∈ V )
5 feq3 ( 𝑥 = 𝐴 → ( 𝑓 : 𝑦𝑥𝑓 : 𝑦𝐴 ) )
6 5 abbidv ( 𝑥 = 𝐴 → { 𝑓𝑓 : 𝑦𝑥 } = { 𝑓𝑓 : 𝑦𝐴 } )
7 feq2 ( 𝑦 = 𝐵 → ( 𝑓 : 𝑦𝐴𝑓 : 𝐵𝐴 ) )
8 7 abbidv ( 𝑦 = 𝐵 → { 𝑓𝑓 : 𝑦𝐴 } = { 𝑓𝑓 : 𝐵𝐴 } )
9 df-map m = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓𝑓 : 𝑦𝑥 } )
10 6 8 9 ovmpog ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ { 𝑓𝑓 : 𝐵𝐴 } ∈ V ) → ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 } )
11 10 3expia ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝑓𝑓 : 𝐵𝐴 } ∈ V → ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 } ) )
12 3 4 11 syl2an ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝑓𝑓 : 𝐵𝐴 } ∈ V → ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 } ) )
13 2 12 mpd ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴m 𝐵 ) = { 𝑓𝑓 : 𝐵𝐴 } )