Step |
Hyp |
Ref |
Expression |
1 |
|
mapex |
⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V ) |
3 |
|
elex |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) |
4 |
|
elex |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) |
5 |
|
feq3 |
⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑦 ⟶ 𝑥 ↔ 𝑓 : 𝑦 ⟶ 𝐴 ) ) |
6 |
5
|
abbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } = { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝐴 } ) |
7 |
|
feq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑓 : 𝑦 ⟶ 𝐴 ↔ 𝑓 : 𝐵 ⟶ 𝐴 ) ) |
8 |
7
|
abbidv |
⊢ ( 𝑦 = 𝐵 → { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝐴 } = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) |
9 |
|
df-map |
⊢ ↑m = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ) |
10 |
6 8 9
|
ovmpog |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V ) → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) |
11 |
10
|
3expia |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) ) |
12 |
3 4 11
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ∈ V → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) ) |
13 |
2 12
|
mpd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐴 } ) |