Step |
Hyp |
Ref |
Expression |
1 |
|
mapex |
|- ( ( B e. D /\ A e. C ) -> { f | f : B --> A } e. _V ) |
2 |
1
|
ancoms |
|- ( ( A e. C /\ B e. D ) -> { f | f : B --> A } e. _V ) |
3 |
|
elex |
|- ( A e. C -> A e. _V ) |
4 |
|
elex |
|- ( B e. D -> B e. _V ) |
5 |
|
feq3 |
|- ( x = A -> ( f : y --> x <-> f : y --> A ) ) |
6 |
5
|
abbidv |
|- ( x = A -> { f | f : y --> x } = { f | f : y --> A } ) |
7 |
|
feq2 |
|- ( y = B -> ( f : y --> A <-> f : B --> A ) ) |
8 |
7
|
abbidv |
|- ( y = B -> { f | f : y --> A } = { f | f : B --> A } ) |
9 |
|
df-map |
|- ^m = ( x e. _V , y e. _V |-> { f | f : y --> x } ) |
10 |
6 8 9
|
ovmpog |
|- ( ( A e. _V /\ B e. _V /\ { f | f : B --> A } e. _V ) -> ( A ^m B ) = { f | f : B --> A } ) |
11 |
10
|
3expia |
|- ( ( A e. _V /\ B e. _V ) -> ( { f | f : B --> A } e. _V -> ( A ^m B ) = { f | f : B --> A } ) ) |
12 |
3 4 11
|
syl2an |
|- ( ( A e. C /\ B e. D ) -> ( { f | f : B --> A } e. _V -> ( A ^m B ) = { f | f : B --> A } ) ) |
13 |
2 12
|
mpd |
|- ( ( A e. C /\ B e. D ) -> ( A ^m B ) = { f | f : B --> A } ) |