Metamath Proof Explorer


Theorem ovmpog

Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses ovmpog.1
|- ( x = A -> R = G )
ovmpog.2
|- ( y = B -> G = S )
ovmpog.3
|- F = ( x e. C , y e. D |-> R )
Assertion ovmpog
|- ( ( A e. C /\ B e. D /\ S e. H ) -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpog.1
 |-  ( x = A -> R = G )
2 ovmpog.2
 |-  ( y = B -> G = S )
3 ovmpog.3
 |-  F = ( x e. C , y e. D |-> R )
4 1 2 sylan9eq
 |-  ( ( x = A /\ y = B ) -> R = S )
5 4 3 ovmpoga
 |-  ( ( A e. C /\ B e. D /\ S e. H ) -> ( A F B ) = S )