Metamath Proof Explorer


Theorem ovmpo

Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses ovmpog.1
|- ( x = A -> R = G )
ovmpog.2
|- ( y = B -> G = S )
ovmpog.3
|- F = ( x e. C , y e. D |-> R )
ovmpo.4
|- S e. _V
Assertion ovmpo
|- ( ( A e. C /\ B e. D ) -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpog.1
 |-  ( x = A -> R = G )
2 ovmpog.2
 |-  ( y = B -> G = S )
3 ovmpog.3
 |-  F = ( x e. C , y e. D |-> R )
4 ovmpo.4
 |-  S e. _V
5 1 2 3 ovmpog
 |-  ( ( A e. C /\ B e. D /\ S e. _V ) -> ( A F B ) = S )
6 4 5 mp3an3
 |-  ( ( A e. C /\ B e. D ) -> ( A F B ) = S )