| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssrab2 | 
							 |-  { f e. ~P ( B X. A ) | Fun f } C_ ~P ( B X. A ) | 
						
						
							| 2 | 
							
								
							 | 
							xpexg | 
							 |-  ( ( B e. D /\ A e. C ) -> ( B X. A ) e. _V )  | 
						
						
							| 3 | 
							
								2
							 | 
							ancoms | 
							 |-  ( ( A e. C /\ B e. D ) -> ( B X. A ) e. _V )  | 
						
						
							| 4 | 
							
								3
							 | 
							pwexd | 
							 |-  ( ( A e. C /\ B e. D ) -> ~P ( B X. A ) e. _V )  | 
						
						
							| 5 | 
							
								
							 | 
							ssexg | 
							 |-  ( ( { f e. ~P ( B X. A ) | Fun f } C_ ~P ( B X. A ) /\ ~P ( B X. A ) e. _V ) -> { f e. ~P ( B X. A ) | Fun f } e. _V ) | 
						
						
							| 6 | 
							
								1 4 5
							 | 
							sylancr | 
							 |-  ( ( A e. C /\ B e. D ) -> { f e. ~P ( B X. A ) | Fun f } e. _V ) | 
						
						
							| 7 | 
							
								
							 | 
							elex | 
							 |-  ( A e. C -> A e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							elex | 
							 |-  ( B e. D -> B e. _V )  | 
						
						
							| 9 | 
							
								
							 | 
							xpeq2 | 
							 |-  ( x = A -> ( y X. x ) = ( y X. A ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							pweqd | 
							 |-  ( x = A -> ~P ( y X. x ) = ~P ( y X. A ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rabeqdv | 
							 |-  ( x = A -> { f e. ~P ( y X. x ) | Fun f } = { f e. ~P ( y X. A ) | Fun f } ) | 
						
						
							| 12 | 
							
								
							 | 
							xpeq1 | 
							 |-  ( y = B -> ( y X. A ) = ( B X. A ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							pweqd | 
							 |-  ( y = B -> ~P ( y X. A ) = ~P ( B X. A ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rabeqdv | 
							 |-  ( y = B -> { f e. ~P ( y X. A ) | Fun f } = { f e. ~P ( B X. A ) | Fun f } ) | 
						
						
							| 15 | 
							
								
							 | 
							df-pm | 
							 |-  ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) | 
						
						
							| 16 | 
							
								11 14 15
							 | 
							ovmpog | 
							 |-  ( ( A e. _V /\ B e. _V /\ { f e. ~P ( B X. A ) | Fun f } e. _V ) -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) | 
						
						
							| 17 | 
							
								16
							 | 
							3expia | 
							 |-  ( ( A e. _V /\ B e. _V ) -> ( { f e. ~P ( B X. A ) | Fun f } e. _V -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) ) | 
						
						
							| 18 | 
							
								7 8 17
							 | 
							syl2an | 
							 |-  ( ( A e. C /\ B e. D ) -> ( { f e. ~P ( B X. A ) | Fun f } e. _V -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) ) | 
						
						
							| 19 | 
							
								6 18
							 | 
							mpd | 
							 |-  ( ( A e. C /\ B e. D ) -> ( A ^pm B ) = { f e. ~P ( B X. A ) | Fun f } ) |