Description: The value of set exponentiation (inference version). ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapval.1 | |- A e. _V  | 
					|
| mapval.2 | |- B e. _V  | 
					||
| Assertion | mapval | |- ( A ^m B ) = { f | f : B --> A } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mapval.1 | |- A e. _V  | 
						|
| 2 | mapval.2 | |- B e. _V  | 
						|
| 3 | mapvalg |  |-  ( ( A e. _V /\ B e. _V ) -> ( A ^m B ) = { f | f : B --> A } ) | 
						|
| 4 | 1 2 3 | mp2an |  |-  ( A ^m B ) = { f | f : B --> A } |