| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab2 |
⊢ { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ⊆ 𝒫 ( 𝐵 × 𝐴 ) |
| 2 |
|
xpexg |
⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
| 4 |
3
|
pwexd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝒫 ( 𝐵 × 𝐴 ) ∈ V ) |
| 5 |
|
ssexg |
⊢ ( ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ⊆ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝒫 ( 𝐵 × 𝐴 ) ∈ V ) → { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V ) |
| 6 |
1 4 5
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V ) |
| 7 |
|
elex |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) |
| 8 |
|
elex |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) |
| 9 |
|
xpeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 × 𝑥 ) = ( 𝑦 × 𝐴 ) ) |
| 10 |
9
|
pweqd |
⊢ ( 𝑥 = 𝐴 → 𝒫 ( 𝑦 × 𝑥 ) = 𝒫 ( 𝑦 × 𝐴 ) ) |
| 11 |
10
|
rabeqdv |
⊢ ( 𝑥 = 𝐴 → { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } = { 𝑓 ∈ 𝒫 ( 𝑦 × 𝐴 ) ∣ Fun 𝑓 } ) |
| 12 |
|
xpeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 × 𝐴 ) = ( 𝐵 × 𝐴 ) ) |
| 13 |
12
|
pweqd |
⊢ ( 𝑦 = 𝐵 → 𝒫 ( 𝑦 × 𝐴 ) = 𝒫 ( 𝐵 × 𝐴 ) ) |
| 14 |
13
|
rabeqdv |
⊢ ( 𝑦 = 𝐵 → { 𝑓 ∈ 𝒫 ( 𝑦 × 𝐴 ) ∣ Fun 𝑓 } = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) |
| 15 |
|
df-pm |
⊢ ↑pm = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } ) |
| 16 |
11 14 15
|
ovmpog |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V ) → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) |
| 17 |
16
|
3expia |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) ) |
| 18 |
7 8 17
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) ) |
| 19 |
6 18
|
mpd |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) |