Metamath Proof Explorer


Theorem xpeq1

Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion xpeq1 ( 𝐴 = 𝐵 → ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 anbi1d ( 𝐴 = 𝐵 → ( ( 𝑥𝐴𝑦𝐶 ) ↔ ( 𝑥𝐵𝑦𝐶 ) ) )
3 2 opabbidv ( 𝐴 = 𝐵 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝐶 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐶 ) } )
4 df-xp ( 𝐴 × 𝐶 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦𝐶 ) }
5 df-xp ( 𝐵 × 𝐶 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐶 ) }
6 3 4 5 3eqtr4g ( 𝐴 = 𝐵 → ( 𝐴 × 𝐶 ) = ( 𝐵 × 𝐶 ) )