Description: Equality theorem for Cartesian product. (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpeq1 | |- ( A = B -> ( A X. C ) = ( B X. C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) | |
| 2 | 1 | anbi1d | |- ( A = B -> ( ( x e. A /\ y e. C ) <-> ( x e. B /\ y e. C ) ) ) | 
| 3 | 2 | opabbidv |  |-  ( A = B -> { <. x , y >. | ( x e. A /\ y e. C ) } = { <. x , y >. | ( x e. B /\ y e. C ) } ) | 
| 4 | df-xp |  |-  ( A X. C ) = { <. x , y >. | ( x e. A /\ y e. C ) } | |
| 5 | df-xp |  |-  ( B X. C ) = { <. x , y >. | ( x e. B /\ y e. C ) } | |
| 6 | 3 4 5 | 3eqtr4g | |- ( A = B -> ( A X. C ) = ( B X. C ) ) |