Metamath Proof Explorer


Theorem pmvalg

Description: The value of the partial mapping operation. ( A ^pm B ) is the set of all partial functions that map from B to A . (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion pmvalg ACBDA𝑝𝑚B=f𝒫B×A|Funf

Proof

Step Hyp Ref Expression
1 ssrab2 f𝒫B×A|Funf𝒫B×A
2 xpexg BDACB×AV
3 2 ancoms ACBDB×AV
4 3 pwexd ACBD𝒫B×AV
5 ssexg f𝒫B×A|Funf𝒫B×A𝒫B×AVf𝒫B×A|FunfV
6 1 4 5 sylancr ACBDf𝒫B×A|FunfV
7 elex ACAV
8 elex BDBV
9 xpeq2 x=Ay×x=y×A
10 9 pweqd x=A𝒫y×x=𝒫y×A
11 10 rabeqdv x=Af𝒫y×x|Funf=f𝒫y×A|Funf
12 xpeq1 y=By×A=B×A
13 12 pweqd y=B𝒫y×A=𝒫B×A
14 13 rabeqdv y=Bf𝒫y×A|Funf=f𝒫B×A|Funf
15 df-pm 𝑝𝑚=xV,yVf𝒫y×x|Funf
16 11 14 15 ovmpog AVBVf𝒫B×A|FunfVA𝑝𝑚B=f𝒫B×A|Funf
17 16 3expia AVBVf𝒫B×A|FunfVA𝑝𝑚B=f𝒫B×A|Funf
18 7 8 17 syl2an ACBDf𝒫B×A|FunfVA𝑝𝑚B=f𝒫B×A|Funf
19 6 18 mpd ACBDA𝑝𝑚B=f𝒫B×A|Funf