Metamath Proof Explorer


Definition df-pm

Description: Define the partial mapping operation. A partial function from B to A is a function from a subset of B to A . The set of all partial functions from B to A is written ( A ^pm B ) (see pmvalg ). A notation for this operation apparently does not appear in the literature. We use ^pm to distinguish it from the less general set exponentiation operation ^m ( df-map ). See mapsspm for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007)

Ref Expression
Assertion df-pm 𝑝𝑚 = x V , y V f 𝒫 y × x | Fun f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpm class 𝑝𝑚
1 vx setvar x
2 cvv class V
3 vy setvar y
4 vf setvar f
5 3 cv setvar y
6 1 cv setvar x
7 5 6 cxp class y × x
8 7 cpw class 𝒫 y × x
9 4 cv setvar f
10 9 wfun wff Fun f
11 10 4 8 crab class f 𝒫 y × x | Fun f
12 1 3 2 2 11 cmpo class x V , y V f 𝒫 y × x | Fun f
13 0 12 wceq wff 𝑝𝑚 = x V , y V f 𝒫 y × x | Fun f