Metamath Proof Explorer


Theorem mapprc

Description: When A is a proper class, the class of all functions mapping A to B is empty. Exercise 4.41 of Mendelson p. 255. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion mapprc ¬ A V f | f : A B =

Proof

Step Hyp Ref Expression
1 abn0 f | f : A B f f : A B
2 fdm f : A B dom f = A
3 vex f V
4 3 dmex dom f V
5 2 4 eqeltrrdi f : A B A V
6 5 exlimiv f f : A B A V
7 1 6 sylbi f | f : A B A V
8 7 necon1bi ¬ A V f | f : A B =