Description: When A is a proper class, the class of all functions mapping A to B is empty. Exercise 4.41 of Mendelson p. 255. (Contributed by NM, 8-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapprc | |- ( -. A e. _V -> { f | f : A --> B } = (/) ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abn0 |  |-  ( { f | f : A --> B } =/= (/) <-> E. f f : A --> B ) | 
						|
| 2 | fdm | |- ( f : A --> B -> dom f = A )  | 
						|
| 3 | vex | |- f e. _V  | 
						|
| 4 | 3 | dmex | |- dom f e. _V  | 
						
| 5 | 2 4 | eqeltrrdi | |- ( f : A --> B -> A e. _V )  | 
						
| 6 | 5 | exlimiv | |- ( E. f f : A --> B -> A e. _V )  | 
						
| 7 | 1 6 | sylbi |  |-  ( { f | f : A --> B } =/= (/) -> A e. _V ) | 
						
| 8 | 7 | necon1bi |  |-  ( -. A e. _V -> { f | f : A --> B } = (/) ) |