Metamath Proof Explorer


Theorem mapprc

Description: When A is a proper class, the class of all functions mapping A to B is empty. Exercise 4.41 of Mendelson p. 255. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion mapprc
|- ( -. A e. _V -> { f | f : A --> B } = (/) )

Proof

Step Hyp Ref Expression
1 abn0
 |-  ( { f | f : A --> B } =/= (/) <-> E. f f : A --> B )
2 fdm
 |-  ( f : A --> B -> dom f = A )
3 vex
 |-  f e. _V
4 3 dmex
 |-  dom f e. _V
5 2 4 eqeltrrdi
 |-  ( f : A --> B -> A e. _V )
6 5 exlimiv
 |-  ( E. f f : A --> B -> A e. _V )
7 1 6 sylbi
 |-  ( { f | f : A --> B } =/= (/) -> A e. _V )
8 7 necon1bi
 |-  ( -. A e. _V -> { f | f : A --> B } = (/) )