Metamath Proof Explorer


Theorem pmex

Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007)

Ref Expression
Assertion pmex
|- ( ( A e. C /\ B e. D ) -> { f | ( Fun f /\ f C_ ( A X. B ) ) } e. _V )

Proof

Step Hyp Ref Expression
1 ancom
 |-  ( ( Fun f /\ f C_ ( A X. B ) ) <-> ( f C_ ( A X. B ) /\ Fun f ) )
2 1 abbii
 |-  { f | ( Fun f /\ f C_ ( A X. B ) ) } = { f | ( f C_ ( A X. B ) /\ Fun f ) }
3 xpexg
 |-  ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V )
4 abssexg
 |-  ( ( A X. B ) e. _V -> { f | ( f C_ ( A X. B ) /\ Fun f ) } e. _V )
5 3 4 syl
 |-  ( ( A e. C /\ B e. D ) -> { f | ( f C_ ( A X. B ) /\ Fun f ) } e. _V )
6 2 5 eqeltrid
 |-  ( ( A e. C /\ B e. D ) -> { f | ( Fun f /\ f C_ ( A X. B ) ) } e. _V )