| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwexg |  |-  ( A e. V -> ~P A e. _V ) | 
						
							| 2 |  | df-pw |  |-  ~P A = { x | x C_ A } | 
						
							| 3 | 2 | eleq1i |  |-  ( ~P A e. _V <-> { x | x C_ A } e. _V ) | 
						
							| 4 |  | simpl |  |-  ( ( x C_ A /\ ph ) -> x C_ A ) | 
						
							| 5 | 4 | ss2abi |  |-  { x | ( x C_ A /\ ph ) } C_ { x | x C_ A } | 
						
							| 6 |  | ssexg |  |-  ( ( { x | ( x C_ A /\ ph ) } C_ { x | x C_ A } /\ { x | x C_ A } e. _V ) -> { x | ( x C_ A /\ ph ) } e. _V ) | 
						
							| 7 | 5 6 | mpan |  |-  ( { x | x C_ A } e. _V -> { x | ( x C_ A /\ ph ) } e. _V ) | 
						
							| 8 | 3 7 | sylbi |  |-  ( ~P A e. _V -> { x | ( x C_ A /\ ph ) } e. _V ) | 
						
							| 9 | 1 8 | syl |  |-  ( A e. V -> { x | ( x C_ A /\ ph ) } e. _V ) |