Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwexg | |- ( A e. V -> ~P A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 2 | 1 | eleq1d | |- ( x = A -> ( ~P x e. _V <-> ~P A e. _V ) ) |
| 3 | vpwex | |- ~P x e. _V |
|
| 4 | 2 3 | vtoclg | |- ( A e. V -> ~P A e. _V ) |