Metamath Proof Explorer


Theorem vpwex

Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of TakeutiZaring p. 17. (Contributed by NM, 30-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Revised to prove pwexg from vpwex . (Revised by BJ, 10-Aug-2022)

Ref Expression
Assertion vpwex
|- ~P x e. _V

Proof

Step Hyp Ref Expression
1 df-pw
 |-  ~P x = { y | y C_ x }
2 axpow2
 |-  E. z A. y ( y C_ x -> y e. z )
3 2 bm1.3ii
 |-  E. z A. y ( y e. z <-> y C_ x )
4 abeq2
 |-  ( z = { y | y C_ x } <-> A. y ( y e. z <-> y C_ x ) )
5 4 exbii
 |-  ( E. z z = { y | y C_ x } <-> E. z A. y ( y e. z <-> y C_ x ) )
6 3 5 mpbir
 |-  E. z z = { y | y C_ x }
7 6 issetri
 |-  { y | y C_ x } e. _V
8 1 7 eqeltri
 |-  ~P x e. _V