Description: Define the partial mapping operation. A partial function from B to A is a function from a subset of B to A . The set of all partial functions from B to A is written ( A ^pm B ) (see pmvalg ). A notation for this operation apparently does not appear in the literature. We use ^pm to distinguish it from the less general set exponentiation operation ^m ( df-map ). See mapsspm for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pm | |- ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cpm | |- ^pm  | 
						|
| 1 | vx | |- x  | 
						|
| 2 | cvv | |- _V  | 
						|
| 3 | vy | |- y  | 
						|
| 4 | vf | |- f  | 
						|
| 5 | 3 | cv | |- y  | 
						
| 6 | 1 | cv | |- x  | 
						
| 7 | 5 6 | cxp | |- ( y X. x )  | 
						
| 8 | 7 | cpw | |- ~P ( y X. x )  | 
						
| 9 | 4 | cv | |- f  | 
						
| 10 | 9 | wfun | |- Fun f  | 
						
| 11 | 10 4 8 | crab |  |-  { f e. ~P ( y X. x ) | Fun f } | 
						
| 12 | 1 3 2 2 11 | cmpo |  |-  ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) | 
						
| 13 | 0 12 | wceq |  |-  ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) |