Metamath Proof Explorer


Definition df-pm

Description: Define the partial mapping operation. A partial function from B to A is a function from a subset of B to A . The set of all partial functions from B to A is written ( A ^pm B ) (see pmvalg ). A notation for this operation apparently does not appear in the literature. We use ^pm to distinguish it from the less general set exponentiation operation ^m ( df-map ). See mapsspm for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007)

Ref Expression
Assertion df-pm
|- ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpm
 |-  ^pm
1 vx
 |-  x
2 cvv
 |-  _V
3 vy
 |-  y
4 vf
 |-  f
5 3 cv
 |-  y
6 1 cv
 |-  x
7 5 6 cxp
 |-  ( y X. x )
8 7 cpw
 |-  ~P ( y X. x )
9 4 cv
 |-  f
10 9 wfun
 |-  Fun f
11 10 4 8 crab
 |-  { f e. ~P ( y X. x ) | Fun f }
12 1 3 2 2 11 cmpo
 |-  ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } )
13 0 12 wceq
 |-  ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } )