Description: Define the partial mapping operation. A partial function from B to A is a function from a subset of B to A . The set of all partial functions from B to A is written ( A ^pm B ) (see pmvalg ). A notation for this operation apparently does not appear in the literature. We use ^pm to distinguish it from the less general set exponentiation operation ^m ( df-map ). See mapsspm for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pm | |- ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpm | |- ^pm |
|
1 | vx | |- x |
|
2 | cvv | |- _V |
|
3 | vy | |- y |
|
4 | vf | |- f |
|
5 | 3 | cv | |- y |
6 | 1 | cv | |- x |
7 | 5 6 | cxp | |- ( y X. x ) |
8 | 7 | cpw | |- ~P ( y X. x ) |
9 | 4 | cv | |- f |
10 | 9 | wfun | |- Fun f |
11 | 10 4 8 | crab | |- { f e. ~P ( y X. x ) | Fun f } |
12 | 1 3 2 2 11 | cmpo | |- ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) |
13 | 0 12 | wceq | |- ^pm = ( x e. _V , y e. _V |-> { f e. ~P ( y X. x ) | Fun f } ) |