Metamath Proof Explorer


Theorem pwsbas

Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsbas.y Y = R 𝑠 I
pwsbas.f B = Base R
Assertion pwsbas R V I W B I = Base Y

Proof

Step Hyp Ref Expression
1 pwsbas.y Y = R 𝑠 I
2 pwsbas.f B = Base R
3 eqid Scalar R = Scalar R
4 1 3 pwsval R V I W Y = Scalar R 𝑠 I × R
5 4 fveq2d R V I W Base Y = Base Scalar R 𝑠 I × R
6 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
7 fvexd R V I W Scalar R V
8 simpr R V I W I W
9 snex R V
10 xpexg I W R V I × R V
11 8 9 10 sylancl R V I W I × R V
12 eqid Base Scalar R 𝑠 I × R = Base Scalar R 𝑠 I × R
13 snnzg R V R
14 13 adantr R V I W R
15 dmxp R dom I × R = I
16 14 15 syl R V I W dom I × R = I
17 6 7 11 12 16 prdsbas R V I W Base Scalar R 𝑠 I × R = x I Base I × R x
18 fvconst2g R V x I I × R x = R
19 18 fveq2d R V x I Base I × R x = Base R
20 19 ralrimiva R V x I Base I × R x = Base R
21 20 adantr R V I W x I Base I × R x = Base R
22 ixpeq2 x I Base I × R x = Base R x I Base I × R x = x I Base R
23 21 22 syl R V I W x I Base I × R x = x I Base R
24 17 23 eqtrd R V I W Base Scalar R 𝑠 I × R = x I Base R
25 fvex Base R V
26 ixpconstg I W Base R V x I Base R = Base R I
27 8 25 26 sylancl R V I W x I Base R = Base R I
28 2 oveq1i B I = Base R I
29 27 28 eqtr4di R V I W x I Base R = B I
30 5 24 29 3eqtrrd R V I W B I = Base Y