Metamath Proof Explorer


Theorem ixpeq2

Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006)

Ref Expression
Assertion ixpeq2 xAB=CxAB=xAC

Proof

Step Hyp Ref Expression
1 ss2ixp xABCxABxAC
2 ss2ixp xACBxACxAB
3 1 2 anim12i xABCxACBxABxACxACxAB
4 eqss B=CBCCB
5 4 ralbii xAB=CxABCCB
6 r19.26 xABCCBxABCxACB
7 5 6 bitri xAB=CxABCxACB
8 eqss xAB=xACxABxACxACxAB
9 3 7 8 3imtr4i xAB=CxAB=xAC