Metamath Proof Explorer


Theorem ss2ixp

Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006) (Revised by Mario Carneiro, 12-Aug-2016)

Ref Expression
Assertion ss2ixp xABCxABxAC

Proof

Step Hyp Ref Expression
1 ssel BCfxBfxC
2 1 ral2imi xABCxAfxBxAfxC
3 2 anim2d xABCfFnx|xAxAfxBfFnx|xAxAfxC
4 3 ss2abdv xABCf|fFnx|xAxAfxBf|fFnx|xAxAfxC
5 df-ixp xAB=f|fFnx|xAxAfxB
6 df-ixp xAC=f|fFnx|xAxAfxC
7 4 5 6 3sstr4g xABCxABxAC