Metamath Proof Explorer


Theorem prdsbas

Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p P=S𝑠R
prdsbas.s φSV
prdsbas.r φRW
prdsbas.b B=BaseP
prdsbas.i φdomR=I
Assertion prdsbas φB=xIBaseRx

Proof

Step Hyp Ref Expression
1 prdsbas.p P=S𝑠R
2 prdsbas.s φSV
3 prdsbas.r φRW
4 prdsbas.b B=BaseP
5 prdsbas.i φdomR=I
6 eqid BaseS=BaseS
7 eqidd φxIBaseRx=xIBaseRx
8 eqidd φfxIBaseRx,gxIBaseRxxIfx+Rxgx=fxIBaseRx,gxIBaseRxxIfx+Rxgx
9 eqidd φfxIBaseRx,gxIBaseRxxIfxRxgx=fxIBaseRx,gxIBaseRxxIfxRxgx
10 eqidd φfBaseS,gxIBaseRxxIfRxgx=fBaseS,gxIBaseRxxIfRxgx
11 eqidd φfxIBaseRx,gxIBaseRxSxIfx𝑖Rxgx=fxIBaseRx,gxIBaseRxSxIfx𝑖Rxgx
12 eqidd φ𝑡TopOpenR=𝑡TopOpenR
13 eqidd φfg|fgxIBaseRxxIfxRxgx=fg|fgxIBaseRxxIfxRxgx
14 eqidd φfxIBaseRx,gxIBaseRxsupranxIfxdistRxgx0*<=fxIBaseRx,gxIBaseRxsupranxIfxdistRxgx0*<
15 eqidd φfxIBaseRx,gxIBaseRxxIfxHomRxgx=fxIBaseRx,gxIBaseRxxIfxHomRxgx
16 eqidd φaxIBaseRx×xIBaseRx,cxIBaseRxd2ndafxIBaseRx,gxIBaseRxxIfxHomRxgxc,efxIBaseRx,gxIBaseRxxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex=axIBaseRx×xIBaseRx,cxIBaseRxd2ndafxIBaseRx,gxIBaseRxxIfxHomRxgxc,efxIBaseRx,gxIBaseRxxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
17 1 6 5 7 8 9 10 11 12 13 14 15 16 2 3 prdsval φP=BasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgxScalarndxSndxfBaseS,gxIBaseRxxIfRxgx𝑖ndxfxIBaseRx,gxIBaseRxSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgxIBaseRxxIfxRxgxdistndxfxIBaseRx,gxIBaseRxsupranxIfxdistRxgx0*<HomndxfxIBaseRx,gxIBaseRxxIfxHomRxgxcompndxaxIBaseRx×xIBaseRx,cxIBaseRxd2ndafxIBaseRx,gxIBaseRxxIfxHomRxgxc,efxIBaseRx,gxIBaseRxxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
18 baseid Base=SlotBasendx
19 18 strfvss BaseRxranRx
20 fvssunirn RxranR
21 rnss RxranRranRxranranR
22 uniss ranRxranranRranRxranranR
23 20 21 22 mp2b ranRxranranR
24 19 23 sstri BaseRxranranR
25 24 rgenw xIBaseRxranranR
26 iunss xIBaseRxranranRxIBaseRxranranR
27 25 26 mpbir xIBaseRxranranR
28 rnexg RWranRV
29 uniexg ranRVranRV
30 3 28 29 3syl φranRV
31 rnexg ranRVranranRV
32 uniexg ranranRVranranRV
33 30 31 32 3syl φranranRV
34 ssexg xIBaseRxranranRranranRVxIBaseRxV
35 27 33 34 sylancr φxIBaseRxV
36 ixpssmap2g xIBaseRxVxIBaseRxxIBaseRxI
37 ovex xIBaseRxIV
38 37 ssex xIBaseRxxIBaseRxIxIBaseRxV
39 35 36 38 3syl φxIBaseRxV
40 snsstp1 BasendxxIBaseRxBasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgx
41 ssun1 BasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgxBasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgxScalarndxSndxfBaseS,gxIBaseRxxIfRxgx𝑖ndxfxIBaseRx,gxIBaseRxSxIfx𝑖Rxgx
42 40 41 sstri BasendxxIBaseRxBasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgxScalarndxSndxfBaseS,gxIBaseRxxIfRxgx𝑖ndxfxIBaseRx,gxIBaseRxSxIfx𝑖Rxgx
43 ssun1 BasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgxScalarndxSndxfBaseS,gxIBaseRxxIfRxgx𝑖ndxfxIBaseRx,gxIBaseRxSxIfx𝑖RxgxBasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgxScalarndxSndxfBaseS,gxIBaseRxxIfRxgx𝑖ndxfxIBaseRx,gxIBaseRxSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgxIBaseRxxIfxRxgxdistndxfxIBaseRx,gxIBaseRxsupranxIfxdistRxgx0*<HomndxfxIBaseRx,gxIBaseRxxIfxHomRxgxcompndxaxIBaseRx×xIBaseRx,cxIBaseRxd2ndafxIBaseRx,gxIBaseRxxIfxHomRxgxc,efxIBaseRx,gxIBaseRxxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
44 42 43 sstri BasendxxIBaseRxBasendxxIBaseRx+ndxfxIBaseRx,gxIBaseRxxIfx+RxgxndxfxIBaseRx,gxIBaseRxxIfxRxgxScalarndxSndxfBaseS,gxIBaseRxxIfRxgx𝑖ndxfxIBaseRx,gxIBaseRxSxIfx𝑖RxgxTopSetndx𝑡TopOpenRndxfg|fgxIBaseRxxIfxRxgxdistndxfxIBaseRx,gxIBaseRxsupranxIfxdistRxgx0*<HomndxfxIBaseRx,gxIBaseRxxIfxHomRxgxcompndxaxIBaseRx×xIBaseRx,cxIBaseRxd2ndafxIBaseRx,gxIBaseRxxIfxHomRxgxc,efxIBaseRx,gxIBaseRxxIfxHomRxgxaxIdx1stax2ndaxcompRxcxex
45 17 4 18 39 44 prdsbaslem φB=xIBaseRx