Metamath Proof Explorer


Theorem uniss

Description: Subclass relationship for class union. Theorem 61 of Suppes p. 39. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion uniss A B A B

Proof

Step Hyp Ref Expression
1 ssel A B y A y B
2 1 anim2d A B x y y A x y y B
3 2 eximdv A B y x y y A y x y y B
4 eluni x A y x y y A
5 eluni x B y x y y B
6 3 4 5 3imtr4g A B x A x B
7 6 ssrdv A B A B