Metamath Proof Explorer


Theorem uniss

Description: Subclass relationship for class union. Theorem 61 of Suppes p. 39. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion uniss ABAB

Proof

Step Hyp Ref Expression
1 ssel AByAyB
2 1 anim2d ABxyyAxyyB
3 2 eximdv AByxyyAyxyyB
4 eluni xAyxyyA
5 eluni xByxyyB
6 3 4 5 3imtr4g ABxAxB
7 6 ssrdv ABAB