Metamath Proof Explorer


Theorem uniss

Description: Subclass relationship for class union. Theorem 61 of Suppes p. 39. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion uniss ( 𝐴𝐵 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑦𝐴𝑦𝐵 ) )
2 1 anim2d ( 𝐴𝐵 → ( ( 𝑥𝑦𝑦𝐴 ) → ( 𝑥𝑦𝑦𝐵 ) ) )
3 2 eximdv ( 𝐴𝐵 → ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) → ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) ) )
4 eluni ( 𝑥 𝐴 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) )
5 eluni ( 𝑥 𝐵 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) )
6 3 4 5 3imtr4g ( 𝐴𝐵 → ( 𝑥 𝐴𝑥 𝐵 ) )
7 6 ssrdv ( 𝐴𝐵 𝐴 𝐵 )