Description: Subclass relationship for class union. Theorem 61 of Suppes p. 39. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | uniss | ⊢ ( 𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) | |
2 | 1 | anim2d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
3 | 2 | eximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
4 | eluni | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) | |
5 | eluni | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) | |
6 | 3 4 5 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵 ) ) |
7 | 6 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵 ) |