Metamath Proof Explorer


Theorem frlmsubgval

Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses frlmsubval.y Y = R freeLMod I
frlmsubval.b B = Base Y
frlmsubval.r φ R Ring
frlmsubval.i φ I W
frlmsubval.f φ F B
frlmsubval.g φ G B
frlmsubval.a - ˙ = - R
frlmsubval.p M = - Y
Assertion frlmsubgval φ F M G = F - ˙ f G

Proof

Step Hyp Ref Expression
1 frlmsubval.y Y = R freeLMod I
2 frlmsubval.b B = Base Y
3 frlmsubval.r φ R Ring
4 frlmsubval.i φ I W
5 frlmsubval.f φ F B
6 frlmsubval.g φ G B
7 frlmsubval.a - ˙ = - R
8 frlmsubval.p M = - Y
9 1 2 frlmpws R Ring I W Y = ringLMod R 𝑠 I 𝑠 B
10 3 4 9 syl2anc φ Y = ringLMod R 𝑠 I 𝑠 B
11 10 fveq2d φ - Y = - ringLMod R 𝑠 I 𝑠 B
12 8 11 syl5eq φ M = - ringLMod R 𝑠 I 𝑠 B
13 12 oveqd φ F M G = F - ringLMod R 𝑠 I 𝑠 B G
14 rlmlmod R Ring ringLMod R LMod
15 3 14 syl φ ringLMod R LMod
16 eqid ringLMod R 𝑠 I = ringLMod R 𝑠 I
17 16 pwslmod ringLMod R LMod I W ringLMod R 𝑠 I LMod
18 15 4 17 syl2anc φ ringLMod R 𝑠 I LMod
19 eqid LSubSp ringLMod R 𝑠 I = LSubSp ringLMod R 𝑠 I
20 1 2 19 frlmlss R Ring I W B LSubSp ringLMod R 𝑠 I
21 3 4 20 syl2anc φ B LSubSp ringLMod R 𝑠 I
22 19 lsssubg ringLMod R 𝑠 I LMod B LSubSp ringLMod R 𝑠 I B SubGrp ringLMod R 𝑠 I
23 18 21 22 syl2anc φ B SubGrp ringLMod R 𝑠 I
24 eqid - ringLMod R 𝑠 I = - ringLMod R 𝑠 I
25 eqid ringLMod R 𝑠 I 𝑠 B = ringLMod R 𝑠 I 𝑠 B
26 eqid - ringLMod R 𝑠 I 𝑠 B = - ringLMod R 𝑠 I 𝑠 B
27 24 25 26 subgsub B SubGrp ringLMod R 𝑠 I F B G B F - ringLMod R 𝑠 I G = F - ringLMod R 𝑠 I 𝑠 B G
28 23 5 6 27 syl3anc φ F - ringLMod R 𝑠 I G = F - ringLMod R 𝑠 I 𝑠 B G
29 lmodgrp ringLMod R LMod ringLMod R Grp
30 3 14 29 3syl φ ringLMod R Grp
31 eqid Base R = Base R
32 1 31 2 frlmbasmap I W F B F Base R I
33 4 5 32 syl2anc φ F Base R I
34 rlmbas Base R = Base ringLMod R
35 16 34 pwsbas ringLMod R Grp I W Base R I = Base ringLMod R 𝑠 I
36 30 4 35 syl2anc φ Base R I = Base ringLMod R 𝑠 I
37 33 36 eleqtrd φ F Base ringLMod R 𝑠 I
38 1 31 2 frlmbasmap I W G B G Base R I
39 4 6 38 syl2anc φ G Base R I
40 39 36 eleqtrd φ G Base ringLMod R 𝑠 I
41 eqid Base ringLMod R 𝑠 I = Base ringLMod R 𝑠 I
42 rlmsub - R = - ringLMod R
43 7 42 eqtri - ˙ = - ringLMod R
44 16 41 43 24 pwssub ringLMod R Grp I W F Base ringLMod R 𝑠 I G Base ringLMod R 𝑠 I F - ringLMod R 𝑠 I G = F - ˙ f G
45 30 4 37 40 44 syl22anc φ F - ringLMod R 𝑠 I G = F - ˙ f G
46 13 28 45 3eqtr2d φ F M G = F - ˙ f G