Metamath Proof Explorer


Theorem rlmsub

Description: Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Assertion rlmsub -R=-ringLModR

Proof

Step Hyp Ref Expression
1 rlmbas BaseR=BaseringLModR
2 1 a1i BaseR=BaseringLModR
3 rlmplusg +R=+ringLModR
4 3 a1i +R=+ringLModR
5 2 4 grpsubpropd -R=-ringLModR
6 5 mptru -R=-ringLModR