Metamath Proof Explorer


Theorem rlmmulr

Description: Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmmulr R=ringLModR

Proof

Step Hyp Ref Expression
1 rlmval ringLModR=subringAlgRBaseR
2 1 a1i ringLModR=subringAlgRBaseR
3 ssidd BaseRBaseR
4 2 3 sramulr R=ringLModR
5 4 mptru R=ringLModR