Metamath Proof Explorer


Theorem sramulr

Description: Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
Assertion sramulr φ W = A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 mulrid 𝑟 = Slot ndx
4 scandxnmulrndx Scalar ndx ndx
5 vscandxnmulrndx ndx ndx
6 ipndxnmulrndx 𝑖 ndx ndx
7 1 2 3 4 5 6 sralem φ W = A