Metamath Proof Explorer


Theorem sramulrOLD

Description: Obsolete proof of sramulr as of 29-Oct-2024. Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
Assertion sramulrOLD φW=A

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 df-mulr 𝑟=Slot3
4 3nn 3
5 3lt5 3<5
6 5 orci 3<58<3
7 1 2 3 4 6 sralemOLD φW=A