Metamath Proof Explorer


Theorem sramulrOLD

Description: Obsolete proof of sramulr as of 29-Oct-2024. Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion sramulrOLD ( 𝜑 → ( .r𝑊 ) = ( .r𝐴 ) )

Proof

Step Hyp Ref Expression
1 srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2 srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
3 df-mulr .r = Slot 3
4 3nn 3 ∈ ℕ
5 3lt5 3 < 5
6 5 orci ( 3 < 5 ∨ 8 < 3 )
7 1 2 3 4 6 sralemOLD ( 𝜑 → ( .r𝑊 ) = ( .r𝐴 ) )