Metamath Proof Explorer


Theorem sramulr

Description: Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses srapart.a
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) )
srapart.s
|- ( ph -> S C_ ( Base ` W ) )
Assertion sramulr
|- ( ph -> ( .r ` W ) = ( .r ` A ) )

Proof

Step Hyp Ref Expression
1 srapart.a
 |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) )
2 srapart.s
 |-  ( ph -> S C_ ( Base ` W ) )
3 mulrid
 |-  .r = Slot ( .r ` ndx )
4 scandxnmulrndx
 |-  ( Scalar ` ndx ) =/= ( .r ` ndx )
5 vscandxnmulrndx
 |-  ( .s ` ndx ) =/= ( .r ` ndx )
6 ipndxnmulrndx
 |-  ( .i ` ndx ) =/= ( .r ` ndx )
7 1 2 3 4 5 6 sralem
 |-  ( ph -> ( .r ` W ) = ( .r ` A ) )