Description: Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmsub | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ ( ringLMod ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 3 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 4 | 3 | a1i | ⊢ ( ⊤ → ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 5 | 2 4 | grpsubpropd | ⊢ ( ⊤ → ( -g ‘ 𝑅 ) = ( -g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 6 | 5 | mptru | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ ( ringLMod ‘ 𝑅 ) ) |