Metamath Proof Explorer


Theorem pwslmod

Description: A structure power of a left module is a left module. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypothesis pwslmod.y Y=R𝑠I
Assertion pwslmod RLModIVYLMod

Proof

Step Hyp Ref Expression
1 pwslmod.y Y=R𝑠I
2 eqid ScalarR=ScalarR
3 1 2 pwsval RLModIVY=ScalarR𝑠I×R
4 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
5 2 lmodring RLModScalarRRing
6 5 adantr RLModIVScalarRRing
7 simpr RLModIVIV
8 fconst6g RLModI×R:ILMod
9 8 adantr RLModIVI×R:ILMod
10 fvconst2g RLModxII×Rx=R
11 10 adantlr RLModIVxII×Rx=R
12 11 fveq2d RLModIVxIScalarI×Rx=ScalarR
13 4 6 7 9 12 prdslmodd RLModIVScalarR𝑠I×RLMod
14 3 13 eqeltrd RLModIVYLMod