| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmval.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlmpws.b |
|- B = ( Base ` F ) |
| 3 |
|
frlmlss.u |
|- U = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) |
| 4 |
1
|
frlmval |
|- ( ( R e. Ring /\ I e. W ) -> F = ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 5 |
4
|
fveq2d |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` F ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) |
| 6 |
2 5
|
eqtrid |
|- ( ( R e. Ring /\ I e. W ) -> B = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) ) |
| 7 |
|
simpr |
|- ( ( R e. Ring /\ I e. W ) -> I e. W ) |
| 8 |
|
simpl |
|- ( ( R e. Ring /\ I e. W ) -> R e. Ring ) |
| 9 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
| 10 |
9
|
adantr |
|- ( ( R e. Ring /\ I e. W ) -> ( ringLMod ` R ) e. LMod ) |
| 11 |
|
fconst6g |
|- ( ( ringLMod ` R ) e. LMod -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) |
| 12 |
10 11
|
syl |
|- ( ( R e. Ring /\ I e. W ) -> ( I X. { ( ringLMod ` R ) } ) : I --> LMod ) |
| 13 |
|
fvex |
|- ( ringLMod ` R ) e. _V |
| 14 |
13
|
fvconst2 |
|- ( i e. I -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) |
| 15 |
14
|
adantl |
|- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( ( I X. { ( ringLMod ` R ) } ) ` i ) = ( ringLMod ` R ) ) |
| 16 |
15
|
fveq2d |
|- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = ( Scalar ` ( ringLMod ` R ) ) ) |
| 17 |
|
rlmsca |
|- ( R e. Ring -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 19 |
16 18
|
eqtr4d |
|- ( ( ( R e. Ring /\ I e. W ) /\ i e. I ) -> ( Scalar ` ( ( I X. { ( ringLMod ` R ) } ) ` i ) ) = R ) |
| 20 |
|
eqid |
|- ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) |
| 21 |
|
eqid |
|- ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 22 |
|
eqid |
|- ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) = ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) |
| 23 |
7 8 12 19 20 21 22
|
dsmmlss |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) e. ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) ) |
| 24 |
|
eqid |
|- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
| 25 |
|
eqid |
|- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
| 26 |
24 25
|
pwsval |
|- ( ( ( ringLMod ` R ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 27 |
13 26
|
mpan |
|- ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 28 |
27
|
adantl |
|- ( ( R e. Ring /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 29 |
17
|
eqcomd |
|- ( R e. Ring -> ( Scalar ` ( ringLMod ` R ) ) = R ) |
| 30 |
29
|
adantr |
|- ( ( R e. Ring /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = R ) |
| 31 |
30
|
oveq1d |
|- ( ( R e. Ring /\ I e. W ) -> ( ( Scalar ` ( ringLMod ` R ) ) Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) |
| 32 |
28 31
|
eqtr2d |
|- ( ( R e. Ring /\ I e. W ) -> ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) = ( ( ringLMod ` R ) ^s I ) ) |
| 33 |
32
|
fveq2d |
|- ( ( R e. Ring /\ I e. W ) -> ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 34 |
33 3
|
eqtr4di |
|- ( ( R e. Ring /\ I e. W ) -> ( LSubSp ` ( R Xs_ ( I X. { ( ringLMod ` R ) } ) ) ) = U ) |
| 35 |
23 34
|
eleqtrd |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( R (+)m ( I X. { ( ringLMod ` R ) } ) ) ) e. U ) |
| 36 |
6 35
|
eqeltrd |
|- ( ( R e. Ring /\ I e. W ) -> B e. U ) |