Metamath Proof Explorer


Theorem rrxbasefi

Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of ( RR ^m X ) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rrxbasefi.x
|- ( ph -> X e. Fin )
rrxbasefi.h
|- H = ( RR^ ` X )
rrxbasefi.b
|- B = ( Base ` H )
Assertion rrxbasefi
|- ( ph -> B = ( RR ^m X ) )

Proof

Step Hyp Ref Expression
1 rrxbasefi.x
 |-  ( ph -> X e. Fin )
2 rrxbasefi.h
 |-  H = ( RR^ ` X )
3 rrxbasefi.b
 |-  B = ( Base ` H )
4 2 3 rrxbase
 |-  ( X e. Fin -> B = { f e. ( RR ^m X ) | f finSupp 0 } )
5 1 4 syl
 |-  ( ph -> B = { f e. ( RR ^m X ) | f finSupp 0 } )
6 ssrab2
 |-  { f e. ( RR ^m X ) | f finSupp 0 } C_ ( RR ^m X )
7 5 6 eqsstrdi
 |-  ( ph -> B C_ ( RR ^m X ) )
8 simpr
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f e. ( RR ^m X ) )
9 elmapi
 |-  ( f e. ( RR ^m X ) -> f : X --> RR )
10 9 adantl
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f : X --> RR )
11 1 adantr
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> X e. Fin )
12 c0ex
 |-  0 e. _V
13 12 a1i
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> 0 e. _V )
14 10 11 13 fdmfifsupp
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f finSupp 0 )
15 rabid
 |-  ( f e. { f e. ( RR ^m X ) | f finSupp 0 } <-> ( f e. ( RR ^m X ) /\ f finSupp 0 ) )
16 8 14 15 sylanbrc
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f e. { f e. ( RR ^m X ) | f finSupp 0 } )
17 5 eqcomd
 |-  ( ph -> { f e. ( RR ^m X ) | f finSupp 0 } = B )
18 17 adantr
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> { f e. ( RR ^m X ) | f finSupp 0 } = B )
19 16 18 eleqtrd
 |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f e. B )
20 7 19 eqelssd
 |-  ( ph -> B = ( RR ^m X ) )