| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxbasefi.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | rrxbasefi.h |  |-  H = ( RR^ ` X ) | 
						
							| 3 |  | rrxbasefi.b |  |-  B = ( Base ` H ) | 
						
							| 4 | 2 3 | rrxbase |  |-  ( X e. Fin -> B = { f e. ( RR ^m X ) | f finSupp 0 } ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> B = { f e. ( RR ^m X ) | f finSupp 0 } ) | 
						
							| 6 |  | ssrab2 |  |-  { f e. ( RR ^m X ) | f finSupp 0 } C_ ( RR ^m X ) | 
						
							| 7 | 5 6 | eqsstrdi |  |-  ( ph -> B C_ ( RR ^m X ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f e. ( RR ^m X ) ) | 
						
							| 9 |  | elmapi |  |-  ( f e. ( RR ^m X ) -> f : X --> RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f : X --> RR ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> X e. Fin ) | 
						
							| 12 |  | c0ex |  |-  0 e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> 0 e. _V ) | 
						
							| 14 | 10 11 13 | fdmfifsupp |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f finSupp 0 ) | 
						
							| 15 |  | rabid |  |-  ( f e. { f e. ( RR ^m X ) | f finSupp 0 } <-> ( f e. ( RR ^m X ) /\ f finSupp 0 ) ) | 
						
							| 16 | 8 14 15 | sylanbrc |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f e. { f e. ( RR ^m X ) | f finSupp 0 } ) | 
						
							| 17 | 5 | eqcomd |  |-  ( ph -> { f e. ( RR ^m X ) | f finSupp 0 } = B ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> { f e. ( RR ^m X ) | f finSupp 0 } = B ) | 
						
							| 19 | 16 18 | eleqtrd |  |-  ( ( ph /\ f e. ( RR ^m X ) ) -> f e. B ) | 
						
							| 20 | 7 19 | eqelssd |  |-  ( ph -> B = ( RR ^m X ) ) |